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We study the conditions for the controllability nf a dynamic system whose 
behavior in a finite-dimensional phase space is described by a nonlinear dif- 

ferential equation. The results obtained complement the investigations in 

Cl- 101. 

1. Deffnitionc rnd formulatlonr of results. Let R” be an n-dimen- 
sional arithmetic space of points z = co1 (xc,, . . . . 5,) with norm 1 . I. We examine 
the system 

z’ = A (t)s + B (t)u + cp (t, 5, u), .z E R", u E R", t E tt,, co) 0.1) 

Here the real ( n X n ) and ( n X m ) matrices A (t) and B (t) are continuous for 

t E [to, m); the real function cp (t, x, u) is continuous in the collection of argu- 

ments (t, 5, U) E Ito, co) x R"x R". We say that the control u. (t), t E 1 = 
[to, t,] translates the position (to, x0) of system (1.1) into the position (tl, 0) if the 
solution Z. (t) , satisfying the initial condition z (to) = x0 of system (1.1) under con- 
trol u = U. (t) is defined for all t E 1, is unique on I , and passes through the point 
x1 = 0 at instant tl : x0 (tJ --_ 0. 
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Without further stipulation we shall assume everywhere below that the following two 
conditions are fulfilled. 

1) The linear system 

5’ = A (t).z: + B (t)u 0.2) 

is completely controllable on a fixed time interval 1 = it,, t,l. This signifies that 
for any 5, E fin there exists a control u0 (t), continuous on 1, which translates the 

position (t,, X0) of system (1.2) into the position (&, 0). 

2) System (1.1) possesses the property of right-hand uniqueness, i.e. for any z,, E 

R” and any control u0 (t) continuous on I , the solution of the Cauchy problem for 

. 
5 = A (t)r + B (Quo (t) + rp (t, IC, ui, (t)), x (to) = 50 

is unique on the right maximal interval of existence. 

Let X (t, s) be a solution of the matrix problem X’ = n (t)X, X (s) = E, where 

E is the unit matrix, and let Y (t, S) be a solution of the adjoint matrix problem 

Y’ = --A* (t)Y, Y (s) = E. We construct the matrix 

W (t, s) = ( Y* (z, s) B (z) B* (a) Y (z, s) dz, s\(t 
s 

It is known (see [4-J, for example) that system (1.2) is completely controllable on 1 if 
and only if det w (tl, to) # 0. Therefore, the matrices 

K:(t, s) = 
( 

x (t, to)W (t1, t)vv-l (k &)X (to, a), t, < s < t ;\< t1 

-x (t, t,)W(t, t,)W-’ (t1, t,)X (to, s), t, < t < s < t1 

L (t, s) = -B* (t)Y (t, t,)W-’ (tl, t,)Y* (6 6,) 

exist. In addition, we introduce the following notation : 

k(t) = maxsEI I K (t, s) 1, 2 (t) = max=r 1 L (t, d I 

I P 1 = maq,k3 I PJ: I 

0.3) 

where 1 P 1 is the norm of matrix P. 
Definition 1. Suppose that the time interval 1 = [to, tsl has been fixed. 

System (1.1) is said to be completely controllable if for each x0 E R* we can find a 

control U. (t) E Rm, continuous on 1, which translates the position (to, x0) of sys- 

tem (1.1) into the position (lx, 0). 
Theorem 1. Assume that we have found functions a (t), b (t), c (t) , continuo~ 

on 1, and numbers o, P >, 0 ensuring the inequality 

I cp (6 x, u) I < a (t> I R: Ia + b (6 I 7~ I@ + c (t> (1.4) 

for all (t, 5, U) E 1 x R* x Rm. Assume. further, that at least one of the conditions 

1) a<l, fi<1; 2) a<$, @ = 1, jbEdt<l 

3)a=1, p<1Jakdt<1; 4)a=p=1,J(ak+bfl)dt<1 

has been fulfilled. Then system (1.1) is completely controllable. Here and everywhere 
throughout the following analysis 



Controllability of a nonlinear system In a linear approximation 559 

If& = if(t)& 
to 

Note. From Theorem 3 it follows, in particular, that system (1.1) is completely 

controllable under constrained inequalities ( I q 1 < c, (t, z, u) E I x Rn x Rm) . 
This result is contained in [5, lo] as well. 

Definition 2. Assume that the time interval I = [to, tIl and a set Q = 

Q (t, x) of space R” have been fixed, where the set Q is continuous in the sense of 

the Hausdorff metric and depends upon the point (t, t) E 1 x s,, where s,= {X E 

R” : 1 x 1 ( y}. System (1.1) is said to be locally controllable in-the-small if for any 
E E (0, y] there exists 6 > 0 such that for each IC,, E Ss we can find a control 
z+, (t), continuous on 1 , which translates the position (t,, x0) of system (1.1) intothe 

position (tl, 0) , and, in addition, (1) the trajectory z0 (t) of system (1. l), correspond- 
ing to control u,, (t), satisfies the inclusion z,, (t) E S,; (2) the control u. (t) and 

the trajectory x0 (t> are such that u. (t)E i2 (t, x0 (t)), t E I. 
Theorem 2. Assume the existence of functions a (t), b (t), continuous on I , 

of numbers a, p > 0 and of a neighborhood U of point z = 0, u = 0 such that 
the inequality 

(1.5) 

is fulfilled for all (t, x, u) E I X U . Assume further, that 0 E int, Q (t, O), t E 
I and that at least one of the conditions 

1) a=i==, SW+bqdt<i; 2) a=l, j3>1, Jakdt<l 
3) a> 1, /3 == 1, lbldt< 1; 4)a>C j3>1 

is fulfilled. Then system (1.1) is locally controllable in-the-small. 

Note. The known theorem on local controllability in the first approximation (see 

[3], p. 61) follows from Theorem 2 with a = fi = 2. 
The following theorem includes the results obtained in [6, 71. We denote r (t, E) = 

max I cp (t, x, 4 I , I z I 4 E, I u I < E. 
Theorem 3. If lim E-l 5 r (t, g)dt = 0, E + co, then system (1.1) is com- 

pletely controllable. If lim E-‘Jr (t, &it = 0, c --f 0 and 0 E int Q (t, 0), 
t E I, then system (1.1) is locally controllable in-the-small. 

In a number of cases the investigation of the controllability of system (1.1) can be 
replaced by an investigation of the controllability of a simpler system. This follows from 

Theorem 4 presented below. 
Let us assume that among the rows bl*, . . . . b,* 

b; , . . . . bi”, such that the ( m X m )-matrix 

bi,* 
B, (t) = .** 

bi”, 

of matrix B (t) there are m rows 

is nonsingular for t E I. We choose the compnents with indices il, . . . , i, in vector 
cp and we set up the vector ‘po (t, 2, U) = Co1 ((piI, . . . . q&. We examine the equa- 
tion 

2 = -Bo-l (t) ‘p. (t, 5, z) + u (1.6) 
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relative to the m-vector z. 
Theorem 4. If for all (t, x, U> E 1 X R” X R” Eq. (1.6) has at least one 

solution z0 (t, 5, U) depending continuously on point (t, 5, U) , then the complete con- 

trollability of system (1.1) follows from the complete controllability of the sys:em 

z’ = A (0~: + B (0~ + cp (t, 2, z0 (t, z, u)) - (B (t) B,-l (t)x (1.7) 
cpo (6 x7 zo (4 2, u)) 

If, however, system (1.7) is locally controllable in-the-small and if the inclusion z. (t, 
5, U) E Q (t, .z) holds for each point (t, Z) E I X S, (where y is the number oc- 

curring in Definition(2))and for each u E Q (t, 2) , then system (1.1) is locally con- 
trollable in-the-small. 

Note. From the Boll-Brauer theorem it follows that when the inequality 

I ‘PO (h 2, 4 I < a (L 4 I z I’+ b (6 4, (t, x) E 1 x Rn 

is satisfied, Eq. (1.6) has a continuous solution &I (t, 2, u) if B < 1 or if p > 1 and 

b (t, 0) = 0 (in the second case the solution exists only in a sufficiently small neighbor- 
hood of the point IC = 0, u = 0). The estimate 1 z. (t, x, u) 1 < h (t, x, u) holds here, 
where h is the smallest positive root of the equation 

1 B,-’ (t) I (u (t, 2) hp + b (t, 4) -I- I u 1 = fz 

Examples. 1. Assume that the matrix B (t) in system (1.1) is of dimension (n >; 
n ) and that det B (t) # 0, t E I, while (p (t, x) is independent of U. Then when U,= 

B, ‘p. = ‘p’, Eq. (1.6) has a unique solution, while system (1.7) coincides with the linear 

system (1.2). 
2. Suppose that the linear stationary system x’ = Ax $ Bu , u E Rm is completely 

controllable. Then in the phase space Rn we can choose a basis so that the matrix B 

can be written as 
0 

B= 
B 11 ,E 

where 9 is a zero ((n - m) X m)-matrix, E is a unit ( m X m )-matrix. Assume that 

the system being examined is perturbed by cp (t, X, U) = co1 (f, cp,), where f (TV x, = 
CO1 (cpl, * . -9 %MI) is independent of LI and q,,, (t, X, u) = ~01 (%-TTI+I~ . . .T %) 

satisfies the estimate 

I ‘PO (6 2, 4 I f a (t, 4 I u I’ + b (t, 4, B < 1, (t, 4 E 1 x R” 

Then, by virtue of Theorem 4, the system 

z’ = AZ + Bu + cp (t, x, u) (1.8) 

is completely controllable if the system x’ = JIJ: + BU + Q (t, T), where 4: = ~01 (1, 

0) is completely controllable. Thus, the property of complete controllability of system 
(1.8) is invariant relative to the components (P,,+,+~, , .>. . , qn of perturbation 9. There- 
fore, for example, the system equivalent to z~“’ = f (t, x, x’, . . ., d--1) !- u, is com- 

pletely controllable on any time interval, independently of the form of f. 

2. Proofc. The proofs of the first three theorems use the Schauder principle on the 
existence of a fixed point. We note that [8, 91 also were devoted to the application of 
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the Schauder principle to the investigation of the controllability of a nonlinear system. 

Lemma 1. Let 5,-, (t); uO (t) be the solution of system 

5 (6 = s K (t, +p ( s7 x (s), u (s)& + K (t, &l)s, (2.1) 

ZJ (t) = s L (t, s)cp ( s, x ($1, z-! (s))ds + L (t, t,)z, 

Then, control u = uO (t) translates the position (to, x0) ofsystem (1.1) into the position 

(tI, 0) along trajectory X0 (t). 
This lemma can be proved by a direct check. 
Lemma 2. System (2.1) has at least one solution for any z,, E R" under the 

hypotheses of Theorem 1. 

Proof. We write system (2.1) as y = Fy, where 

From the structme of matrices K and L it follows that the ( (n + m) X n )-matrix 

R (t, s) satisfies the Radon conditions for (t, s) E I x I. Further, since cp is continuous 

in the collection of arguments (t, y) E I x Rntm, by virtue of a known theorem of 

Nemytskii the operator F is completely continuous as an operator acting from C = 
C (I, Rnfm ) into C, where C is a Banach space of functions y (t) , continuous on I , 
with values in Rn+* and norm 11 y 11 = max l y (t) [, t E I. 

Let inequality (1.4) be fulfilled for a < 1, b < 1. We consider the set C,C C of 

functions y = co1 (z, u) satisfying the conditions 1 x (t) 1 < j,,, 1 u (t) 1 < go, where &, 

is a positive solution of the equation 

E = M (a,P + b&P + Cl + I x0 I) 

M = max {max k (t), max 1 (t), t E I}, a, = ladt, b, = lbdt, cl = lcdt 

k (t), 1 (t) are defined by equalities (1.3). Set C, is a bounded closed convex set in 
space C. Let us show that set C, is invariant relative to mapping F. In fact, let y = 

col c2, u) E c,, Fy = co1 (xl, uJ. For xl we have the estimate 

I 11 (t) I < s I K (6 4 I I cp (s, z (4, u (4) I ds + I K (b to) I I 20 I < 

M (s(a (t) I x (t) Ia + b (4 I u (t)“+ c (0 dt + I ~0 I) < M (doa + b,r;l~a+ 

Cl + I x0 I) = Eo 

Analogously, I u1 (t) I < Eo. Consequently, Fy E C,. System (2.1) has a solution by 
virtue of the Schauder principle. 

Now suppose that inequality (1.4) is fulfilled for CI < 1, fi = 1. By F;, we denote a 
positive root of the equation 

E = k,lA, (a,E” -I- ~1 + I xo I) 

4 = ma%& (4, A, = 1 - Jbldt > 0, aI = Jadt, cl = j-cdt 

The existence of go follows from the conditions a > 1, A, > 0 of Theorem 1. It is clear. 
therefore, that the system of eauations 

3 
5 = h-1 (al:” + \ 2, (t) ‘4~ (t) dt + cl -t 120 I), 

has a positive solution Eo, q. (t) = (I (t) / k,) j,. 
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We construct the set C, of functions Y = co1 (r, u), continuous on i , satisfying the 

inequalities I x (tf I 5 to, 1 u (4 I < % (tf. Set C, is a bounded closed convex set in 
space c and, in addition, C, is invariant relative to mapping F. This is verified by 
the usual method 

Y = co1 (2, u) E cz, Fy = co1 (z,, UJ 

151 (4 I < k, Cl (a (4 I x (Q I’ -I- b (G I u (t) I -t- c (1) dt + I 50 I) G 

h (nl:oa + Sb (t) %o (t) dt + cl + 1 50 1) = ;o. 

Analogously, I u1 (tf J < I&, (t). Consequently, Fy E 15’~. System (2.1) has a solution 
by virtue of the Schauder principle. 

The proof is analogous to the one just considered when a = 1, l3 < 1 . 
Let inequality (1.4) be fulfilled for a = fi = 1. Let us examine the linear system of 

integral equations in the scalar functions E (t), 9 (t) 

E, (t) = k (t) (1 (a (t) E (Q ‘1 b (t) Q (t)) dt i- 1 20 I -i ~1) (2.2) 

$ (t) = I (t) (1 (a (t) F, (0 + b (t) II, (t)) dt --t 1 IO I i- d 

It turns out that system (2.2) has the positive solution 

k it) 
50 (t) = --yy- fl x0 I + Cl) t 

1 (f) 
$0 (i) = 7’ (1 x0 I -t cd (2.3) 

A.=i-.- (ak+bZ)dt>O 
s 

We construct a set C4 of functions y = co1 (2, if), continuous on I , satisfying the 
inequalities 

I z (6 I Q Eli f% I zf (G I < 90 (6 

Set Cb is a bounded closed convex set in space G. In addition, we can verify that C, is 

invariant relative to mapping F. A reference to the Schauder principle completes the 
proof of Lemma 2. 

For further analysis we shall need the following estimate of the solution x0 (t), Z+ (t) 
of system (2. l), perceivable directly from (2.3) when tc -_ fi = 1 : 

f 2% PI I < y. (1 x0 l _t Cl), i (t) 
I ml (ff I d a (I 33 I + 4. t E. 1 (2.4) 

The proof of Theorem 1 follows from Lemmas 1 and 2. 

Lemma 3. Let the hypotheses of Theorem 2 be fulfilled (except for the condition 

0 E int $‘J (t, 0). t E I). Then we can find ?l > 0 such that for each z,, E S, = 
(z E R” : 1 5 1 < a) the system (2.1) has at least one solution x0 (t), ug (t) and 

I cc0 (t> I + I %I (t) I * 0 as I so I -+ 0 uniformly with respect to t E 1, 

Proof. We choose a number v > 0 so small that S, c: U, where S, = {y E Rntm: 

1 Y 1 < v), and U is the region in which inequality (1.5) is fulfilled. From the func- 
tion cp we construct the new function 

i 

cp @7 Ylt 1EI, YES, 

cpl 6 $7 @I = w it, Y) -t 9 

ip t, 1111 I’ t -’ 
Gz 1, II e s, 

It is clear that the function v1 is continuous in all arguments and satisfies inequality 

(1.5) for all (t, 2, 71) E I x Rn x H” 
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Let us assume temporarily that Lemma 3 has been proved for system (2.1) with the 
function ‘pl instead of Q. Consequently, we have proved that there exists a solution 

z,, (t), u0 (t) satisfying the condition 1 z,, (t) 1 + 1 u0 (t) 1 -f 0, 1 z. 1 - 0. This signifies 

that if the number I x0 J is sufficiently small, y. (t) = co1 (z. (t), u0 (t)) E S, for all 
t E I. But, by virtue of the construction of (p, we have the identity ‘pl (t, y0 (t)) = 4, (t, 
y. (t)) and, consequently, system (2.1) with the function Q also has a solution. Thus, the 
existence of a solution of system (2.1) with function ‘pl implies the existence of a solu- 

tion (for sufficiently small ) x0 I) of system (2.1) with function cp. Therefore, without 

loss of generality we assume that inequality (1.5) holds for all (t, 2, u)E: 1 XRn X Rm. 

We first analyze the case a = fl = 1. By arguing in the same way as in the proof of 

Lemma 2 we conclude that the solution r0 (t), IQ (t) of system (2.1) exists and that this 

solution satisfies estimate (2.4) with c1 = 0. Consequently, 

I x0 PI I + I uo (f) I < +-or-o, Izol-tO 

uniformly in t E I. 
M = max {max k (t), max I (t), t E I} 

I,et inequality (1.5) be fulfilled for ci = 1, fl > 1. At first we examine the equation 

$ = + (bl@ + I L-m I) CL 5) 

1 1 = maxtEI 2 (0, A1 = 1 - 1 akdt > 0, b, = s bdt 

in the unknown +. Since p > I, Eq, (2.5) has two positive solutions for sufficiently 
small 1 r. 1 , the smallest of which is q. (zd,. It is clear that q. (zo) - 0, 1 so I -, 0. 
We now consider a system of equations in E (t), % 

E (2) = -yq, +21(S a 0) 4 (t) dt + W P + I m I) (2.6) 

Under the existence conditions for the solution of Eq. (2.5), system (2.6) has the positive 

solution E. (t) = (k (t) / 11) $o, + = q. and, consequently, E. (t) + I$~ --t 0, I z. J + 0 

uniformly in t E I. 

my C, we denote the set of functions y (t) = c01Jz (t), u (t)), continuous on I, satis- 

fying the inequalities I I (t) I < E. (t), I u (t) I < qo. We can show that the set C, is 
invariant relative to the mapping F constructed in the proof of Lemma 2. By virtue of 

the Schauder principle system (2.1) has a solution z. (t), u. (t) satisfying the estimate 

I 20 (t) I + I uo (t) I d 50 VI + “40 
The arguments for the case a > 1, p = 1 are analogous to those just presented. 
Suppose that inequality (1.5) is fulfilled for a > 1, fl > 1. We denote the smallest 

positive solution of the equation 

+ = M (alV + bl@ -I- I 20 I) 

M = max {max k (t), max I (t), t E I}, al = J adt, b, =I bdt 

by Q. (zo) . The solution $. (zo) exists for sufficiently small 1 x0 1 and q. (zo) - 0 as 
1 z. [ + 0. It turns out that the set C4 c C of functions yjt) = co1 (z (t), IL (t)), conti- 
nuous on I, satisfying the inequalities I x (t) I 6 qo, 1 u (t) I < $. , is invariant relative 
to mapping F. This information suffices to complete the proof of Lemma 3. 
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Proof of Theorem 2, The condition 0 E int 52 (t, 0) together with the con- 
tinuity of set a (t, Z) in (t, Z) signifies that we can find numbers e1 > 0, c1 E (0, 

~1 (where Y is the number occurring in Definition 2) ensuring the inclusion Sg, c 

int Q (t, 32) for all (t, Z) E I -x S,,. Suppose that the E occurring in Definition 2 
is given. We construct F~ = min {Ed,. E}. From the numbers Em and 61 we select 6 so 
small that, first, 6 < 6, and, second, for all LC,, E Ss the solution z0 (I), u. (t) of 

system (2.1) satisfies the inclusions z0 (t) E S,,, u0 (t) E: S6,, t E I. This can be 
achieved by virtue of Lemma 3, 

From Lemma 1 it follows that control u0 (t) translates the position (t,, x,,) of system 

(1.1) into the position (tl, 0) along trajectory z,, (t). In addition, 2, (t) E s,, c 
S,. Further, the inclusion u,, (t) E int Q (t, 2) for all (t, Z) E I X s,, follows 
from the inclusion u0 (t) E 5’6, , but x,, (t) E S,, and, therefore, u,, (t) E int Q (t, 
z,, (t)) c 52 (t, LX,, (t)). Theorem 2 is proved. 

Proof of Theorem 3. If 

then the equation 

;\irsl[r(& Qdt = 0 

M(Sr(t, &t+ I%[) = E (2.7) 

M = max {max k (t), max I (t), t E I} 

has a positive solution &, for each x0. We can verify that the bounded closed convex 

set 12~ C C of functions y (t) = co1 (5 (t), u (t)), continuous on 1 and satisfying 

the inequalities Ix (0 I =G Em I u (4 I < Eo: is invariant relative to the mapping 
F constructed in the proof of Lemma 2. If 

lim E-’ Sr (t, g)dt = 0, E * 0 

then Eq. (2.7) has the positive solution E,, = E,, (ICJ --f 0 as 1 x0 1 -+ 0. In this case 

the same set I x (t) I < Eo, I u (6 I d 5 0 serves as the set invariant relative to F. 
The data presented suffices to complete the proof of Theorem 3. 

Proof of Theorem 4. Let u1 (t) be the control translating the position (t,, 20) 
of system (1.7) into the position (tl, 0) along trajectory z1 (t). Then by direct verifi- 
cation we are convinced that the control u0 (t) = 2” (t, x1 (t), u1 (t)) translates the 

position (t,, .z,,) of system (1.1) into the position (tl, 0) along the trajectory z,, (t) = 
z1 (t), t E 1. Therefore, the complete controllability of system (1.1) follows from the 

complete controllability of system (1.7). 
If, however, system (1.7) is locally controllable in-the-small, then u1 (t) E i! (t, 

rl (t)). By virtue of the condition z. (t, Z, u) E Q (t, x) for r[ E Sj (t, 2) , we 

have the inclusion 
uo (t> = 20 (& 51 (% Ul (t)> = Q cc 51(t)) 

so that system (1.1) also is locally controllable in-the-small. 
The author thanks A. B. Kurzhanskii and Iu. S. Osipov for discussions on the results of 

the present paper. 
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We give a method for obtaining the stability conditions for nonlinear systems, 
based on an analysis of the linearized coupling equations and of the linearized 
or quadratic expressions for the integrals of motion. Liapunov’s method is usu- 

ally employed in the investigation of the stability of dynamic systems. The 
investigation of the Hamiltonian function is a convenient tool for systems with 
internal energy dissipation. In fact, in the development of the Thompson (Lord 
Kelvin)-Tait-Chetaev theorem [ 1 - 41 it was shown that the positive definite- 
ness of the Hamiltonian function provides the necessary and sufficient stability 
conditions in the case of complete dissipation. We have obtained just suffici- 

ent conditions for system with partial dissipation ; moreover, the method does 
not yield the possibility ofobtaining far-reaching inferences on stability on the 
basis of the analysis of the linearized equations. It should be noted also that 
in several cases it is convenient to introduce a number of variables, exceeding 
the number of degrees of freedom, and to examine the couplings. Then the 

equations can be simplified or represented in a form convenient for stability 
analysis. 


